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Large Language Models (LLMs) are remarkable at extracting structure from large-scale data—but
the nature of this structure remains hidden. My research seeks to uncover the internal computa-
tional units and emergent patterns embedded within transformer networks, not only to explain
model behavior, but to leverage these learned representations for scientific discovery. My work
spans functional and mechanistic interpretability, united by a goal of converting black-box systems
into engines that surface biologically or clinically meaningful hypotheses.

Functional Interpretability: Axiomatic Understanding of Large Language Models. At UMass
Amherst, my early work focused on the interpretability of neural ranking models, which had seen
widespread deployment without a corresponding understanding of their decision-making. We intro-
duced RankLIME [1], extending LIME to pointwise, pairwise, and listwise rankers for local, scal-
able attribution in real-world systems. Building on this, we developed RankSHAP [4], an axiomatic
framework grounded in Shapley values from coalitional game theory, that ensures attributions for
ordering functions are consistent, faithful, and aligned with human intuition. Experiments across
ranking architectures and datasets, and a user study, validated its practical reliability. Together,
these contributions clarified when common attribution methods fail—and provided the community
with tools tied to principled guarantees. These ideas translated directly to computational biol-
ogy during an internship at Genentech, where I designed an axiomatically grounded attribution
method for PNET, a popular sparse, domain-knowledge-enhanced network used in prostate cancer
discovery. This work established that interpretability can meaningfully assist biomedical insight
generation, strengthening the link between machine learning and translational science.

While these axiomatic approaches clarified what faithful explanations should look like, they left
open a deeper question: what internal representations actually give rise to these attributions? This
realization led me toward mechanistic interpretability—probing how ranking features are encoded
within the model itself.

Mechanistic Interpretability: What Statistical Features Do Ranking LLMs Learn? Build-
ing on the axiomatic understanding of output behavior, we next turned inward—probing LLM
rerankers (LLaMA2/3, Mistral, Pythia) to understand how information retrieval (IR) signals are
represented within their activations [2]. We trained lightweight linear probes over MLP activa-
tions and found that models encode compositional statistics—nonlinear mixtures of classical IR
features such as tf–idf, term overlap, and semantic alignment—rather than simple, independent
proxies. These emergent compositions remain stable across architectures and datasets, indicating
that LLMs converge toward a shared representational basis for ranking even when trained in iso-
lation. Further, feature localization analyses revealed that lexical cues dominate in lower layers,
while semantic and query-document interaction features intensify mid-depth, suggesting a system-
atic progression from surface-level to abstract matching. This functional view is complemented
by a behavioral study of LoRA fine-tuning [5], where we showed: (i) ranking proficiency emerges
within a few hundred steps, (ii) even rank-1 LoRA adapters capture most performance, and (iii)
mid-layer MLPs—particularly up/gate projections—carry disproportionate responsibility for rank-
ing. These findings reveal where task-specific computation lives and motivate a focus on mid-depth
MLP mechanisms.

Hedonic Neurons: Reverse-Engineering Computation via Synergy. While probing reveals
which statistical features are represented, it remains limited by its dependence on input activa-
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tions—capturing only features elicited by specific examples rather than the model’s full compu-
tational landscape. Mechanistic interpretability instead seeks to uncover the emergent features
themselves: the latent, reusable subroutines that drive model behavior. Yet directly analyzing such
mechanisms at scale is challenging, as each LLM layer contains millions of interdependent weights.

To address this, I adopted a weight-based lens and asked whether groups of neurons could be
modeled as self-organizing computational units. Drawing on coalitional game theory, I proposed He-
donic Neurons [3], a framework that treats neurons as agents whose utilities encode synergy—the
non-additive usefulness of co-activation. Using the PAC-Top-Cover algorithm, I identify stable
coalitions that function as cohesive computational subroutines, showing substantially higher syn-
ergy than clustering or SAE baselines, exhibiting 3–5× greater out-of-distribution degradation when
ablated, and aligning with intuitive IR constructs such as IDF weighting, overlap, and semantic
matching. Tracking these coalitions across depth reveals that deeper layers refine and special-
ize existing features rather than inventing new ones—a pattern suggesting modular, hierarchical
computation. By shifting from input-specific activations to weight-grounded coalitional structure,
Hedonic Neurons provide a scalable, principled path to reverse-engineer the internal building blocks
of LLM reasoning.

Unified Research Theme. Across RankSHAP, probing, LoRA studies, and Hedonic Neurons,
my contributions form a consistent methodology:

Isolate and understand the internal computational units that emerge inside LLMs—then
use them to surface new knowledge.

Future Research Directions.
Reverse-engineering emergent features. My long-term goal is to establish a systematic science

of reverse-engineering large language models—focusing on uncovering the emergent features and
statistical regularities encoded within their weight matrices, particularly in MLP submodules. I
aim to infer the underlying rules and patterns that these weights capture about naturally occurring
data. This involves developing weight-based interpretability methods that recover the emergent
priors LLMs internalize during training—the implicit relationships, abstractions, and invariances
that allow them to generalize across domains. By isolating and formalizing these priors, I hope to
both deepen our understanding of real-world data structure and extract actionable insights about
the phenomena they model. Over time, this line of work will build toward a principled framework
for decoding how learning systems compress, organize, and represent knowledge.

Discovery for genomic science. Looking ahead, I aim to apply this reverse-engineering frame-
work to LLMs fine-tuned on genomic, molecular, and clinical data—domains where latent model
structure often mirrors biological processes. By decoding the statistical and mechanistic priors em-
bedded in such models, I hope to reveal how they internalize the logic of gene regulation, mutation
co-occurrence, and cellular response, surfacing hypotheses that complement and guide experimen-
tal biology. My experiences at Genentech and Bristol Myers Squibb have shown that rigorous
interpretability can do more than explain predictions—it can drive new lines of inquiry. I plan to
continue collaborating with pharmaceutical and academic biologists to translate model-level dis-
coveries into actionable insight. As a cancer survivor, my long-term goal is to use mechanistic
interpretability to illuminate the tumor microenvironment and advance precision therapies that
make cancer a tractable and predictable disease.
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